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Semi. y . g / 9—9

September 1, 1985 to February 28, 1986.

The major research effort of the Principal Investigator during the indicated
period has been devoted to a study of "symmetry breaking” in the Taylor
problem, and a general study of various spiral-flow problems. The study of

spiral flows is part of a general investigation of vortex breakdown.

I. The Taylor Problem. A new approach for determining steady flows of
the Taylor problem has been developed to analyze the experimental results of
Benjamin [1] and Benjamin & Mullin [2], and a paper [13] has been submitted
for publication. The approach makes use of a "structure" parameter and leads
to a bifurcation diagram of the type shown in Figure 1 for flows with two and
four cells and a bifurcation diagram of the type shown in Figure 2 for flows with
one and two cells. One assumes that the fluid fills the space between two
concentric cylinders with radii R, and R,, Ry > R,, and both of length /.
The inner and outer cylinders are rotated at constant speeds () and
respectively. Set
Ql(ﬂ*’?Q)

1—n*
The Taylor number, T, and the structure parameter, <, are defined by the

/,L=QQ/QI, T]=R1/R2, d =R2_R1, and A =

formulas
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The Taylor number T is a typical "load" parameter for the Taylor problem,
however, the use of the structure parameter ~ appears to be new. The
parameter -~ is a measurement of how far away certain physical parameters

are from the Rayleigh line (see, e.g., [5, p. 138] for a discussion of the role of the

Rayleigh line in the Taylor problem).

The results obtained for steady flows of the Taylor problem by the
structure parameter approach, such as those indicated in Figure 1 and Figure 2,
are in almost complete agreement with the experimental results in [1; 2], and
are more complete than results obtained by means of amplitude equations [3],

catastrophe theory [1], or singularity theory [14].

II. Rotating channel lows. The study of rotating channel flows is a
preliminary step in the study of spiral flows in the next section. These problems
have some important features in common with spiral flows but are somewhat

easier to analyze than the spiral flows in Section III.

A. Rotating Couette flow. A paper [7] (with G. Knightly) on combined
rotating Couette-Poiseuille channel flow has been completed in which it is
shown that the superposition of a Poiseuille flow on a rotating Couette channel
flow is destabilizing. In the case of non-rotating Couette-Poiseuille flow, a
result of this type was conjectured in [11] on the basis of numerical calculations
for the linearized Navier-Stokes equations. The paper [7] develops one possible

version of the structure parameter approach for fluid mechanics; a second




version of the approach is used in Section IIB to study the opposite problem of

the superposition of a Couette flow on a rotating Poiseuille flow.

If U, (respectively, U,) denotes the maximum velocity of pure Couette
flow (respectively, pure Poiseuille flow) along the axis of the channel when there
is no Poiseuille flow present (respectively, no Couette flow present), if 2
denotes the rate of rotation about an axis perpendicular to the plane of mean
flow (e.g., see the set up in [4; 8]), and if ! denotes the "width" of the channel,

then the swirl-like parameter, S,, and a Reynolds number, R, are defined by

N
(2) Sc = Uc y
5 R U,
(3) =

For fixed S,, 0 < S, <1/2, the appropriate structure parameter, v, and load

parameter, A\, are defined by

U

(4) fy:E(l_-—f?Sc_)’

(5) X = [25,(1—25,)]/?R.

The structure parameter -~y can now be used as an amplitude parameter to

carry out a nonlinear analysis of the problem. As in [6; 13|, the scaling for X

is of the form

(6) N = py — poV(pgb—r), TER',

where o is the smallest, positive, characteristic value of the linearized base
problem when =0, b is a known constant, and 7 is to be determined.

Note that, for fixed U, and S.,, ~ is a measurement of the component of



Poiseuille flow so that the structure parameter approach provides a natural way
to analyze the effects of the superposition of a Poiseuille flow on a rotating
Couette channel flow. In the next section a completely different choice of
structure parameter is made in order to analyze the effects of the superposition

of a Couette flow on a rotating Poiseuille channel flow.

B. Rotating Poiseuille flow. A second paper is in preparation on the
effects of the superposition of a Couette flow on a rotating Poiseuille channel

flow; such an analysis also leads to new results for rotating Poiseuille flow when

there is no Couette flow present (e.g., see [4; 8]).

Let U, U,, Q1 and ! be defined as in Section IIA above. We now define,

however, a swirl-like parameter, S,, and a Reynolds number, R, as

@ 5 =1L,
4
) P v,
v

The appropriate structure parameter, 7, is then defined as

1 U,
9 =8 — = (1—
(9) v=S5, 2( 7

Note that if U, = 0, i.e., the problem of pure Poiseuille flow, then for ~ near

)-

7=0 we have S, near S5, = % The values S, é% correspond to those

rotation rates in the experiments in [4] for which roll-like instabilities with non-
dimensional wave number "approximately" five were observed. Since the

‘numerical calculations in [8] indicate that the minimum Reynolds number for



1 . . . . .
S, = —2— in the linearized problem corresponds to a non-dimensional wave

number of approximately five, the nonlinear analysis here in the special case
when U, =0 leads to results that are in very close agreement with the
experimental results in [4]. The results obtained here for U, %0 are quite

different than those obtained in [11; 12] for non-rotating Couette-Poiseuille flow

and show the strong effects of rotation.

The analysis in this section is based upon a modified structure parameter

approach that is suitable for studying problems in which X\ is of the form
(10) X =g + tpea—1], 7€ R,

rather than the form given in (6). A modified structure parameter approach is
required also in the next section to study spiral flows in a cylindrical annulus
and, in fact, the modified approach used here was developed originally for the

study of such spiral flows.

III. Spiral flows. Various spiral flows have been considered but most of the
actual analysis has been carried out for the spiral flows described in [5, Chap.
VI]. Such spiral flows have been chosen, in particular, as a natural class of

flows for testing Ludwieg’s proposal for vortex breakdown.

A. Rotating Couette flow. If we use the set up described in [5, §51ff.], one
may formally apply a modified structure parameter approach using a structure
parameter, 7, that is proportional to sin(x—), where x is the spiral angle of

the basic flow and % is the spiral angle of the disturbed flow. If, e.g., the



disturbances are axisymmetric (i.e., % = 7/2), then ~ is proportional to the
axial rate of sliding, U,. On the other hand, if x = 0, then one has formally a
situation analogous to but more complicated than that in Section IIA. Provided
that such a formal approach could be justified, it would show, in particular,
that a vanishingly small axial shear would be sufficient to destabilize a pure,
stable, swirling flow; this is the same type of result as that obtained in [9] using
a formal inviscid analysis. The indicated approach would lead also to spiral
flows that are of the same type as those obtained in the experiments in [10].
Such spiral flows seem to be the natural class of flows in which to test
Ludwieg’s proposal for vortex breakdown because they are probably the
simplest class of non-axisymmetric flows that occur in practice.

B. Rotating Poiseuille flow. If we use the general set up in [5, Chap. VI]
with U, =0 and (2, =, one is led formally to a situation somewhat

analogous to Section IIB. In the case of spiral flows, however, the appropriate

swirl-like parameter no longer varies near S, = -;— and the analysis appears to

be considerably more difficult than that in Section IIB. Nevertheless, the use of
Rayleigh’s criterion (e.g., see [5]) again suggests an appropriate structure
parameter so that one can proceed with a modified structure parameter
approach. One would like here, in particular, to obtain spiral flows that are in
agreement with the experimental results in [5, §46] when (2, = (dy; if £, # (Q,,
then the bifurcating spiral vortices are apparently unsteady in every coordinate

system and a different type of analysis must be used.



It is expected that the main efforts of the Principal Investigator during the

next six months will be devoted to the completion of the work on rotating

Poiseuille channel flows outlined in Section IIB, the justification of the formal

approaches to spiral flows indicated in Section III, the determination of the

exact role of Rayleigh’s criterion in spiral flow problems and the investigation of

Ludwieg’s proposal for vortex breakdown.
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